Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Infect Dis ; 214(2): 311-20, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27190175

RESUMO

Cytosolic detection of nucleic acids elicits a type I interferon (IFN) response and plays a critical role in host defense against intracellular pathogens. Herein, a global gene expression profile of Mycobacterium leprae-infected primary human Schwann cells identified the genes differentially expressed in the type I IFN pathway. Among them, the gene encoding 2'-5' oligoadenylate synthetase-like (OASL) underwent the greatest upregulation and was also shown to be upregulated in M. leprae-infected human macrophage cell lineages, primary monocytes, and skin lesion specimens from patients with a disseminated form of leprosy. OASL knock down was associated with decreased viability of M. leprae that was concomitant with upregulation of either antimicrobial peptide expression or autophagy levels. Downregulation of MCP-1/CCL2 release was also observed during OASL knock down. M. leprae-mediated OASL expression was dependent on cytosolic DNA sensing mediated by stimulator of IFN genes signaling. The addition of M. leprae DNA enhanced nonpathogenic Mycobacterium bovis bacillus Calmette-Guerin intracellular survival, downregulated antimicrobial peptide expression, and increased MCP-1/CCL2 secretion. Thus, our data uncover a promycobacterial role for OASL during M. leprae infection that directs the host immune response toward a niche that permits survival of the pathogen.


Assuntos
2',5'-Oligoadenilato Sintetase/metabolismo , Interações Hospedeiro-Patógeno , Proteínas de Membrana/metabolismo , Viabilidade Microbiana , Mycobacterium leprae/fisiologia , Células de Schwann/microbiologia , Células Cultivadas , Células Epiteliais/microbiologia , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Hanseníase/microbiologia , Hanseníase/patologia , Macrófagos/microbiologia , Mycobacterium bovis/fisiologia
2.
s.l; s.n; 2016. 10 p. tab, graf.
Não convencional em Inglês | SES-SP, HANSEN, HANSENIASE, SESSP-ILSLPROD, SES-SP, SESSP-ILSLACERVO, SES-SP | ID: biblio-1095379

RESUMO

Cytosolic detection of nucleic acids elicits a type I interferon (IFN) response and plays a critical role in host defense against intracellular pathogens. Herein, a global gene expression profile of Mycobacterium leprae-infected primary human Schwann cells identified the genes differentially expressed in the type I IFN pathway. Among them, the gene encoding 2'-5' oligoadenylate synthetase-like (OASL) underwent the greatest upregulation and was also shown to be upregulated in M. leprae-infected human macrophage cell lineages, primary monocytes, and skin lesion specimens from patients with a disseminated form of leprosy. OASL knock down was associated with decreased viability of M. leprae that was concomitant with upregulation of either antimicrobial peptide expression or autophagy levels. Downregulation of MCP-1/CCL2 release was also observed during OASL knock down. M. leprae-mediated OASL expression was dependent on cytosolic DNA sensing mediated by stimulator of IFN genes signaling. The addition of M. leprae DNA enhanced nonpathogenic Mycobacterium bovis bacillus Calmette-Guerin intracellular survival, downregulated antimicrobial peptide expression, and increased MCP-1/CCL2 secretion. Thus, our data uncover a promycobacterial role for OASL during M. leprae infection that directs the host immune response toward a niche that permits survival of the pathogen.


Assuntos
Humanos , Células de Schwann/microbiologia , Células Cultivadas , Perfilação da Expressão Gênica , Células Epiteliais/microbiologia , Viabilidade Microbiana , Interações Hospedeiro-Patógeno , Técnicas de Silenciamento de Genes , Hanseníase/microbiologia , Hanseníase/patologia , Macrófagos/microbiologia , Proteínas de Membrana/metabolismo , Mycobacterium bovis/fisiologia , Mycobacterium leprae/fisiologia
3.
PLoS One ; 8(6): e64748, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23798993

RESUMO

Herein, we performed microarray experiments in Schwann cells infected with live M. leprae and identified novel differentially expressed genes (DEG) in M. leprae infected cells. Also, we selected candidate genes associated or implicated with leprosy in genetic studies and biological experiments. Forty-seven genes were selected for validation in two independent types of samples by multiplex qPCR. First, an in vitro model using THP-1 cells was infected with live Mycobacterium leprae and M. bovis bacillus Calmette-Guérin (BCG). In a second situation, mRNA obtained from nerve biopsies from patients with leprosy or other peripheral neuropathies was tested. We detected DEGs that discriminate M. bovis BCG from M. leprae infection. Specific signatures of susceptible responses after M. leprae infection when compared to BCG lead to repression of genes, including CCL2, CCL3, IL8 and SOD2. The same 47-gene set was screened in nerve biopsies, which corroborated the down-regulation of CCL2 and CCL3 in leprosy, but also evidenced the down-regulation of genes involved in mitochondrial metabolism, and the up-regulation of genes involved in lipid metabolism and ubiquitination. Finally, a gene expression signature from DEG was identified in patients confirmed of having leprosy. A classification tree was able to ascertain 80% of the cases as leprosy or non-leprous peripheral neuropathy based on the expression of only LDLR and CCL4. A general immune and mitochondrial hypo-responsive state occurs in response to M. leprae infection. Also, the most important genes and pathways have been highlighted providing new tools for early diagnosis and treatment of leprosy.


Assuntos
Quimiocinas/metabolismo , Hanseníase/metabolismo , Metabolismo dos Lipídeos , Mitocôndrias/metabolismo , Transcriptoma , Células Cultivadas , Quimiocinas/genética , Análise por Conglomerados , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/imunologia , Interações Hospedeiro-Patógeno , Humanos , Hanseníase/imunologia , Hanseníase/microbiologia , Masculino , Mitocôndrias/microbiologia , Mycobacterium bovis/imunologia , Mycobacterium leprae/imunologia , Análise de Sequência com Séries de Oligonucleotídeos , Nervos Periféricos/metabolismo , Células de Schwann/imunologia , Células de Schwann/metabolismo , Células de Schwann/microbiologia
5.
s.l; s.n; 2013. 11 p. ilus, graf.
Não convencional em Inglês | SES-SP, HANSEN, HANSENIASE, SESSP-ILSLPROD, SES-SP, SESSP-ILSLACERVO, SES-SP | ID: biblio-1095732

RESUMO

Herein, we performed microarray experiments in Schwann cells infected with live M. leprae and identified novel differentially expressed genes (DEG) in M. leprae infected cells. Also, we selected candidate genes associated or implicated with leprosy in genetic studies and biological experiments. Forty-seven genes were selected for validation in two independent types of samples by multiplex qPCR. First, an in vitro model using THP-1 cells was infected with live Mycobacterium leprae and M. bovis bacillus Calmette-Guérin (BCG). In a second situation, mRNA obtained from nerve biopsies from patients with leprosy or other peripheral neuropathies was tested. We detected DEGs that discriminate M. bovis BCG from M. leprae infection. Specific signatures of susceptible responses after M. leprae infection when compared to BCG lead to repression of genes, including CCL2, CCL3, IL8 and SOD2. The same 47-gene set was screened in nerve biopsies, which corroborated the down-regulation of CCL2 and CCL3 in leprosy, but also evidenced the down-regulation of genes involved in mitochondrial metabolism, and the up-regulation of genes involved in lipid metabolism and ubiquitination. Finally, a gene expression signature from DEG was identified in patients confirmed of having leprosy. A classification tree was able to ascertain 80% of the cases as leprosy or non-leprous peripheral neuropathy based on the expression of only LDLR and CCL4. A general immune and mitochondrial hypo-responsive state occurs in response to M. leprae infection. Also, the most important genes and pathways have been highlighted providing new tools for early diagnosis and treatment of leprosy.


Assuntos
Masculino , Feminino , Células Cultivadas , Regulação da Expressão Gênica/imunologia , Quimiocinas/metabolismo , Perfilação da Expressão Gênica , Hanseníase/imunologia , Hanseníase/metabolismo , Hanseníase/microbiologia , Mitocôndrias/metabolismo , Mitocôndrias/microbiologia , Mycobacterium bovis/imunologia , Mycobacterium leprae/imunologia , Nervos Periféricos/metabolismo , Células de Schwann/imunologia , Células de Schwann/metabolismo , Análise por Conglomerados , Quimiocinas/genética , Análise de Sequência com Séries de Oligonucleotídeos , Metabolismo dos Lipídeos , Interações Hospedeiro-Patógeno , Transcriptoma
6.
s.l; s.n; 2005. 3 p. tab, graf, mapas.
Não convencional em Inglês | SES-SP, HANSEN, HANSENIASE, SESSP-ILSLPROD, SES-SP, SESSP-ILSLACERVO, SES-SP | ID: biblio-1097746

RESUMO

Leprosy, a chronic human disease with potentially debilitating neurological consequences, results from infection with Mycobacterium leprae. This unculturable pathogen has undergone extensive reductive evolution, with half of its genome now occupied by pseudogenes. Using comparative genomics, we demonstrated that all extant cases of leprosy are attributable to a single clone whose dissemination worldwide can be retraced from analysis of very rare single-nucleotide polymorphisms. The disease seems to have originated in Eastern Africa or the Near East and spread with successive human migrations. Europeans or North Africans introduced leprosy into West Africa and the Americas within the past 500 years.


Assuntos
Humanos , História Antiga , História Medieval , História do Século XVIII , História do Século XIX , Ásia/epidemiologia , América/epidemiologia , Pseudogenes , Genoma Bacteriano , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , África/epidemiologia , Emigração e Imigração , Europa (Continente)/epidemiologia , Genes Bacterianos , Hanseníase/história , Hanseníase/microbiologia , Hanseníase/transmissão , Hanseníase/epidemiologia , Mycobacterium leprae/classificação , Mycobacterium leprae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA